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We investigate a private value auction in which a single “entrant” on winning imposes a
negative externality on two “regular” bidders. In an English auction when all bidders are
active, “regular” bidders free ride, exiting before price reaches their values. In a first-price
sealed-bid auction incentives for free riding and aggressive bidding coexist, limiting free
riding compared to the English auction. We find substantial, though incomplete, free riding
in the clock auction. In first-price auctions, regular bidders bid more aggressively than the
“entrant” and both bid higher than in auctions with no externality. Predictions regarding
revenue, efficiency, and successful entry between the two auctions are satisfied.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The standard literature on auctions considers isolated markets with bidders that are ex ante identical and independent, so
that losing bidders get a zero payoff (or the same payoff they have before the auction).1 However, in cases where auctions
take place within a broader economic framework this is not always the case, as auction participants may be competitors
or cooperators in the relevant aftermarket. This paper considers the case where one of the competitors, on winning the
auction, imposes a negative externality in the aftermarket. The negative externality is identity dependent, non-reciprocal,
and on multiple competitors. We consider the simplest possible model to characterize all of these features: a single-object
private value auction with three bidders where an “entrant,” conditional on winning the item, imposes a negative externality
on two (incumbent) “regular” bidders. An example is a takeover auction where one of the bidders is hostile, and the other
bidders will be worse off if the hostile bidder wins. This negative externality is non-reciprocal since there is no externality
if any of the non-hostile bidders win. Another example is a patent auction where all but one of the bidders are incumbents
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1 See, for example, Milgrom and Weber (1982), Myerson (1981), Riley and Samuelson (1981) and Vickrey (1961).
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who already possess similar technologies, while the remaining bidder is a potential entrant. If the potential entrant wins,
he will add more competition to the industry and take market share from the other bidders. On the other hand, if an
incumbent wins, the market structure will remain more or less the same and no negative externality will be imposed on
the other incumbents.

We examine the effect of a negative externality of this sort in both an English (clock) ascending price auction and
a first-price sealed-bid (FPSB) auction. Intuitively, one might expect more aggressive (higher) bids in an auction with a
negative externality. However, our equilibrium analysis shows that conditional on all three bidders being active in the clock
auction, a regular bidder with a relatively low valuation will have incentive to drop out at a price lower than his value
in an effort to free ride on a regular bidder with a higher valuation. However, once a regular bidder has dropped out, the
remaining regular bidder will bid up to his value plus the absolute value of externality. In a sense, the clock auction provides
a mechanism for the regular bidders to “coordinate” on when to free ride and when to bid aggressively. The FPSB auction,
in contrast, provides no such opportunity because of no information revelation. In this case, both regular bidders bid more
aggressively (higher) than the potential entrant, and the entrant in turn bids more aggressively than in an ordinary auction
with no negative externality.

We conduct an experiment to examine whether the free-riding feature of the clock auction is present in the laboratory,
as well as how closely subjects follow the other equilibrium predictions. In the clock auctions there is substantial, but far
from complete, free riding on the part of regular bidders, which is roughly consistent with what the theory predicts. Further,
in the clock auctions when two bidders are active, bids are close to equilibrium for regular bidders but not for entrants:
Regular bidders drop out close to their value when the remaining bidder is also a regular, and at their value plus the
externality when the remaining bidder is an entrant. While a number of entrants follow the dominant strategy of bidding
up to their value, a considerable number consistently bid above their value. We relate this behavior to spitefulness, similar
to results reported in Andreoni et al. (2007) in second-price auctions when bidders’ valuations are common knowledge. In
the FPSB auctions, consistent with theoretical predictions, regular bidders bid more aggressively (higher) than entrants and,
as predicted, entrants tend to bid more aggressively compared to a FPSB auction without an externality. In the experiment,
the clock auction generates higher efficiency and lower revenue than in the FPSB auction, consistent with the theory. Finally,
entrants win more often in the FPSB auctions than in the clock auctions. Thus, to the extent one can draw policy implications
from the present experiment, to encourage entry policy makers should adopt a FPSB auction rather than a clock auction.

There has been some theoretical work on closely related questions to the one investigated here. Jehiel and Moldovanu
(1995) show that negative externalities may cause delays in negotiation, and Jehiel and Moldovanu (1996) investigate a
case where a potential bidder cannot avoid the negative externality even if he does not participate in the auction. Jehiel et
al. (1996) study mechanism design issues in auctions with negative externalities and show that the seller can sometimes
obtain a greater profit by not selling the item.2 Caillaud and Jehiel (1998) suggest that collusion will be imperfect if a
buyer is worse off when his rival wins the object, to the point that the seller can design an auction to benefit from
the (imperfect) collusive behavior of the bidders. Das Varma (2002) studies auctions with identity-dependent externalities
which are one-to-one and are either reciprocal or non-reciprocal. Ettinger (2003) considers a situation where the losers
of an auction care about the price paid by the winner as a result of various types of price externalities. He shows that a
second-price auction can exacerbate the price externalities compared to a first-price auction. Finally, Hoppe et al. (2006)
consider a license auction among both incumbents and entrants. They also demonstrate (albeit in a complete information
setting) that free riding may arise due to potential competition among incumbents, which accounts for the counter-intuitive
result that auctioning more licenses may not lead to a more competitive outcome.

To the best of our knowledge, we are the first to investigate free riding in an auction where one specific bidder can
impose a negative externality on more than one bidder and to test the model experimentally. Regarding experimental work,
Goeree et al. (2013) is closest in spirit to ours. They consider a situation where one bidder imposes a potential negative
externality on two incumbent bidders in a multi-unit demand setting where neither incumbent can purchase the entire
supply on her own. As such, regular bidders are faced with a threshold type problem. They focus on the incentive for
demand reduction and preemptive bidding in both sealed-bid and ascending price auctions.

The rest of the paper is organized as follows: Section 2 establishes the theoretical framework. Section 3 describes our
experimental design and procedures. Section 4 analyzes the data and presents the main results. Section 5 concludes.

2. Theoretical considerations

There is a single, indivisible object to be auctioned to three risk-neutral bidders. Each bidder’s private value is assumed
to be drawn independently and identically from a uniform distribution on [0,1]. Two of the bidders are referred to as
“regulars” or “incumbents” (R1 and R2) with private values v1 and v2. The third bidder is the potential entrant (E) with
a private value v E . There is an identity dependent negative externality of the amount −x where x ∈ (0,1): if E wins the
auction, both Rs receive a payoff of −x. However, if either R wins the auction, there is no externality so that losing bidders
receive a zero payoff.

2 Jehiel et al. (1999) analyze auctions with externalities following a multidimensional mechanism design approach.
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2.1. The English (clock) auction

In the English clock auction the price starts rising from zero. As the price rises, a bidder must decide whether to stay or
drop out at the current price. The decision to drop out is irreversible. The auction ends when only one bidder is still active,
who wins the item and pays the last drop-out price. We assume that the identities of bidders who have dropped out are
common knowledge.

As it turns out, in our setting with negative externality, both Rs may want to drop out at price P = 0 if their values
are sufficiently low. Unfortunately, employing the standard tie-breaking rule (ties broken at random) presents a technical
challenge to equilibrium analysis.3 As such we introduce an augmented auction, a second-price sealed-bid auction (SPSB)
in which the high bidder wins the right to drop out, paying the second-highest price for the right to do so.4 The losing
bidder does not have to pay anything, but must continue in the auction for at least one price increment. The augmented
auction is conducted after bidders know their valuations, and is only run if both bidders drop out at P = 0. Following
the augmented tie-breaking auction, the two remaining bidders will compete for the rest of the auction (with probability
one).5

Although the augmented auction is an unrealistic element for applications in field settings, we employ it since it is
necessary to have a clear equilibrium benchmark against which to evaluate potentially interesting economic behavior. There
are two potential problems with this solution. One is that it may have prompted subjects to free ride more often, as the
procedure signals that dropping at P = 0 is something worth paying for.6 This should be kept in mind when evaluating our
results. Second, the artificial nature of the tie-breaking rule might be thought to impact the external validity of the results
reported. Aside from the potential impact on the extent of the free riding, we do not believe this is a relevant consideration.
In conducting the experiment we wanted to introduce a strong motivation for free riding. Our design does this. The fact that
this introduces an artificial element that would not be replicated in any field setting is secondary to our goal of studying
the impact of a strong motivation to free ride in auctions.7 This is one of the strengths of the experimental method, being
able to introduce in a controlled environment strong forces to see their impact on behavior.

Clearly, sincere bidding remains a weakly dominant strategy for the entrant; thus in equilibrium, the entrant drops out
at the beginning of the auction with probability zero. Therefore, only the two Rs may form a tie at the zero price.

We will focus on symmetric increasing equilibria in which both incumbent bidders follow the same increasing bid
functions in both the augmented tie-break auction and the English clock auction. In equilibrium, let B(vi) be incumbent i’s
drop-out price when the other two bidders are active and ψ(vi) be his bid in the augmented tie-breaking auction. We can
show the following proposition:

Proposition 1. There exists a unique symmetric increasing equilibrium in this English clock auction augmented by a tie-breaking
auction at clock price P = 0. The equilibrium ψ(·) and B(·) are given below:

For x ∈ (0,1/2),

ψ(v) = x2 − v2

2
, for v ∈ [0, x],

B(v) =
{0, for v ∈ [0, x],

v − x, for v ∈ (x,1 − x],
2v − 1, for v ∈ (1 − x,1];

for x ∈ [1/2,1),

ψ(v) =
{

x2−v2

2 , for v ∈ [0,1 − x),
1
2 − v, for v ∈ [1 − x, 1

2 ],

B(v) =
{

0, when v ∈ [0, 1
2 ],

2v − 1, when v ∈ ( 1
2 ,1].

3 In particular, there does not exist a symmetric equilibrium in which both Rs follow the same drop-out strategies: suppose R2 drops when v2 � x in
equilibrium. Then R1 has an incentive to deviate to B(v1) > 0 when v1 is smaller than but sufficiently close to x.

4 Alternatively, one could conduct an English clock auction between the two dropouts to determine who has the right to drop out at zero price. By
introducing the augmented auction to break the tie, we effectively endogenize the tie-breaking rule to ensure the existence of equilibrium in the spirit of
Jackson et al. (2002) and Simon and Zame (1990).

5 In equilibrium there is zero probability that bidders drop out at any higher price. As such we can use an exogenously determined tie-breaking rule
should this occur. The software was programmed to use a random tie-breaking rule.

6 We are thankful to a referee for pointing this possibility out. We have no way of measuring the potential quantitative impact at this point. We do not
believe it is large, but that is an empirical matter.

7 More realistically, one can think of a scenario in which two long time incumbents collude to determine who drops out first, with the stronger of the
two staying in as he has more resources with which to fight the entrant, splitting the cost of the fight after warding off entry. But this goes well beyond
anything we have modeled or studied here.
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Fig. 1. Equilibrium first-drop price of R in clock auction: (a) x < 0.5; (b) x � 0.5.

When one bidder has already dropped out, Ri with value v will stay until the clock price

P =
{

v, if the other remaining bidder is R,

min{1, v + x}, if the other remaining bidder is E.

The entrant stays till P = v E .

Proof. See Appendix A. �
The equilibrium strategy of a regular bidder when all three bidders are active is shown in Fig. 1.
Clearly, regardless of the magnitude of the externality (x is small or large), v > B(v) for v ∈ (0,1). Thus the equilibrium

exhibits “free riding” in the sense that the lowest valued incumbent will drop out of the clock auction before the price
reaches his or her value (and both may attempt to drop out at zero price). The complete proof of Proposition 1 is quite
tedious, but the intuition is simple: instead of overbidding (and hence incurring a net loss) to prevent the entrant from
winning, an incumbent would be better off by free riding on the other incumbent if the other incumbent has a better chance
of beating the entrant. More precisely, this free-riding feature is caused by the combination of the negative externality and
the dynamic nature of the clock auction: Without the dynamic nature of the clock auction, the incumbents simply cannot
free ride, as will become clear after we develop the equilibrium for the FPSB auction.

Also note that ψ(v) is strictly decreasing in v , so the endogenous tie-breaking rule (the augmented auction) is efficient
in the sense that it will always select the incumbent with the higher value to stay, which improves overall efficiency in the
auction.

2.2. The first-price sealed-bid auction

Again we will characterize the symmetric equilibrium (β(·), γ (·)) where β(·) is the equilibrium bid function for the two
incumbents and γ (·) is the equilibrium bid function for the entrant.

Given that the other two bidders follow the proposed equilibrium strategies, incumbent 1 bids b to maximize his ex-
pected payoff:

EΠ1 = F
(
β−1(b)

)
F
(
γ −1(b)

)
(v1 − b) − x

1∫
γ −1(b)

β−1(γ (v E ))∫
0

f (v2) f (v E)dv2 dv E

= β−1(b)γ −1(b)(v1 − b) − x

1∫
γ −1(b)

β−1(
γ (v E )

)∫
0

dv2 dv E .

That β(·) is a best response to (β(·), γ (·)) implies ∂ EΠ1/∂b = 0 when evaluated at b = β(v1). This leads to the following
equation:

β
′−1(β(v1)

)
γ −1(β(v1)

)(
v1 − β(v1)

) + γ
′−1(β(v1)

)(
v1 − β(v1)

)
v1 − γ −1(β(v1)

)
v1 + xγ

′−1(β(v1)
)

v1 = 0.

Similarly, the entrant bids r to maximize his expected profit:
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Fig. 2. Equilibrium schedules β(·), γ (·), and b(·) under FPSA (x = 0.7).

EΠE = (
F
(
β−1(r)

))2
(v E − r) = (

β−1(r)
)2

(v E − r).

That γ (·) is a best response to β(·) implies ∂ EΠE/∂r = 0 when evaluated at r = γ (v E ) or γ −1(r) = v E . This leads to the
following equation:

2β
′−1(γ (v E)

) · (v E − γ (v E)
) − β−1(γ (v E)

) = 0.

In equilibrium the following differential equations should hold simultaneously:{
β

′−1(b)γ −1(b)(v1 − b) + γ
′−1(b)(v1 − b)v1 − γ −1(b)v1 + xγ

′−1(b)v1 = 0
2β

′−1(r)(v E − r) − β−1(r) = 0,
(1)

where b = β(v1) and r = γ (v E ).

Proposition 2. Under the first-price sealed-bid auction (FPSB), the symmetric equilibrium is characterized by the differential equa-
tions (1) and the boundary conditions β(0) = γ (0) = 0, and β(1) = γ (1) = b for some b ∈ (0,1). For v ∈ (0,1), β(v) > γ (v), i.e.,
incumbents bid more aggressively than the entrant in equilibrium.

Proof. See Appendix A. �
Let the inverse bid functions be ϕR(·) = β−1(·) and ϕE (·) = γ −1(·). Eqs. (1) can be rewritten as follows.{

ϕ′
R(b)ϕE(b)

(
ϕR(b) − b

) + ϕR(b)ϕ′
E(b)

(
ϕR(b) − b

) − ϕR(b)ϕE(b) + xϕ′
E(b)ϕR(b) = 0,

2ϕ′
R(b)

(
ϕE(b) − b

) − ϕR(b) = 0.
(2)

Fig. 2 plots the schedules β(·) and γ (·) (based on x = 0.7), along with the equilibrium bid function for a 3-bidder FPSB
auction with no externality (given by b(v) = 2

3 v).8 As shown β(·) lies above γ (·), as incumbents bid more aggressively than

the entrant in order to avoid the externality. Moreover, the entrant’s bid function lies above b(v) = 2
3 v , as the aggressive

bidding of the incumbents heats up the competition, which in turn requires more aggressive bidding on the part of Es,
more aggressive than under the risk-neutral Nash equilibrium absent an externality. From the figure, it is also clear that
incumbents bid above their values when their values are below some threshold.

In what follows we will be comparing the FPSB and English auctions with respect to revenue, efficiency, and the proba-
bility that an entrant will win the auction.9 Under the assumption of risk neutrality, revenue differences between the two

8 Plotting β(·) forward starting at v = 0 is infeasible as β ′(0) cannot be determined. So we plot the (numerical) equilibrium bid schedules backward

starting at v = 1. b̄ is determined such that β(0) and γ (0) are sufficiently close to zero. That x = 0.7 is chosen as it is consistent with the parameter value
used in our experiments.

9 The results reported here are based on large sample simulations as there is no closed-form solution for the FPSB auction. These results will not
necessarily hold for smaller sample sizes like those employed in the experimental sessions. As such, in comparing revenue, efficiency, and frequency that Es
win the auction, we also report predicted outcomes based on the experimental valuations drawn. The most sensitive element with respect to small sample
properties has to do with differences in average revenue. Differences in revenue variance never overlap for the sample sizes employed, with the English
auction always more efficient than the FPSB auction as well.
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Table 1
Experimental treatments.

Session Total number of
subjects

Number of
E subjects

Number of
R subjects

Number of
groups

Number of
periods

Clock
CL1 15 5 10 5 25
CL2 15 5 10 5 25
CL3 15 5 10 5 25
FPSB
FP1 15 5 10 5 25
FP2 15 5 10 5 25
FP3 15 5 10 5 25
FPSB Ctrl
FPC1 15 0 15 5 25
FPC1 15 0 15 5 25

auction formats increase monotonically with increases in the negative externality, with substantially higher variance in rev-
enue in the English auctions throughout. With respect to efficiency as measured by the probability with which the bidder
with the highest value wins the item (where value includes the externality for Rs), the English auction is always efficient.
This follows from the fact that there will always be at least one R competing with the entrant, and this R will remain active
up to his value plus the externality. Note, however, that this efficiency measure ignores the potential implications of entry
for increased competition and increased efficiency in the product market after entry. Finally, the probability with which an
E wins the auction is smaller than in the FPSB auction, as E’s value must be above any R’s value (including the negative
externality) in order to win, but this is not the case in the FPSB auction.

3. Experimental design

Each experimental session consists of five auctions operating simultaneously with three bidders in each auction. There
are three sessions each for the clock and FPSB auctions with externalities and two sessions for the FPSB with no externality
(a control treatment). Instructions were read out loud with subjects having copies to follow.10 Each session started with
3 dry runs followed by 25 paid periods. All subjects were paid their end of experiment cash balance. Table 1 shows the
number of sessions along with the number of subjects under each auction format. Each session lasted for approximately
one and a half hours.

Private values for all bidders were drawn iid from a uniform distribution with support [0,100] (with integer values only),
with new values drawn before each auction. The externality was set at −70 throughout. At the beginning of a session
subjects were randomly assigned to be either an E or an R (referred to as a type A and type B bidder, respectively), and
remained in that role throughout. In each auction subjects were randomly assigned to a new three-bidder market, with each
market containing one E and two Rs.

The clock auction employed a digital price clock starting at 0 and counting up by 2 every second. The computer screen
showed a bidder’s private value, the bidder’s type, the current price of the item, and the type(s) of other active bidders.
Drop-out prices and dropped bidders’ types were reported as they occurred. Before the start of the auction each bidder had
the opportunity to drop out at 0 or to bid in the auction. If more than one bidder dropped out at zero, an SPSB auction was
conducted to decide the right to drop out at zero.11 The auction stopped as soon as there was only one active bidder. This
last bidder obtained the item and paid the price at which the next-to-last bidder dropped out. At the end of the auction,
the price paid for the item and the winner’s type were announced to all bidders, with earnings reported privately to each
bidder. A complete history of these outcomes was available to each bidder as well.12

In the FPSB auction, each bidder entered an integer bid. The bidder with the highest bid obtained the item and paid a
price equal to his bid. In the case of ties the computer randomly determined who got the item. Losing bidders each incurred
a loss of 70 if E won, and zero profit if an R won. Subjects were permitted to bid above their valuations, with incumbents
permitted to bid above their valuations plus the externality, although both of these outcomes were rarely observed.13

At the beginning of each session, Es were given an initial cash balance of 500 experimental currency units (ECUs) with
Rs having a starting balance of 900 ECUs. The difference in initial cash balance was calibrated to account for losses due to
the externality, and for expected differences in auction earnings between player types. These starting cash balances were
private information so that Es would not have been aware of the larger starting cash balances for Rs. Cash balances were
500 ECUs in the FPSB control sessions. Subjects were paid their end of session balances in cash with ECUs converted into
Chinese yuan at the rate of 10 ECUs = 1 yuan. Earnings averaged 72 (45) yuan for Rs and 52 (54) yuan for Es in the clock

10 A copy of the instructions along with screen shots can be found at http://www.econ.ohio-state.edu/kagel/Externality.
11 As noted, these procedures (or something similar to them) are needed to have a well-defined equilibrium.
12 The software was programmed using zTree (Fishbacker, 2007).
13 Entrants were also permitted to bid above their valuations plus the externality, as were subjects in the FPSB auctions who were permitted to bid up to

500 ECUs.
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(sealed-bid) auctions. Under the prevailing exchange rate this averages out to about $9 US dollars per subject.14 Starting
cash balances were sufficient to insure zero bankruptcies. All subjects had no previous experience with any type of auction
experiment, although some of them may have had experience in another experiment.

An explicit control treatment was employed for the FPSB auction since subjects are known to bid well above the risk-
neutral Nash equilibrium in the absence of a negative externality (see, for example, the many references cited in Kagel,
1995). As such a control treatment is needed to compare bidding with and without the externality. In contrast, bidding in
English clock auctions absent externalities is known to converge to the dominant bidding strategy. This is confirmed here
by bids in the clock auction when only two regular bidders remained active. The size of the externality employed was quite
large as earlier experimental results under a similar design with a much smaller negative externality had a very limited
impact on subject behavior, and provided little scope for learning.15

Subjects were recruited through posters from among the undergraduate students from various departments at South-
western University of Finance and Economics in Chengdu, Sichuan Province, China. In 2011, Southwestern ranked 32 overall
in China for undergraduate education, ranking 30th for freshmen quality based on Chinese college entrance exam scores.

4. Experimental results

4.1. Bidding in clock auctions

In the analysis that follows, unless stated otherwise, data will be reported for the last 12 auctions in each experimental
session, after subjects have had some experience with the auction contingencies. Results are similar to those for the entire
set of auctions, but somewhat closer to equilibrium outcomes, as there is some learning. Results for the entire set of auctions
are reported in the online appendix to the paper.16

In what follows we report the experimental results in the form of a number of conclusions followed by the data sup-
porting those conclusions.

Result 1. In terms of first dropouts, there is substantial, but far from complete free riding on the part of Regular bidders (Rs) as the
theory predicts.

Figs. 3 and 4 show the first-drop price against values in the clock auctions for Rs and Es separately, along with the
equilibrium bid functions.17 There is a mass of bids at or close to zero, bids on the part of Rs with values in the interval
[0,50] as the theory predicts: Rs with values less than or equal to 50 dropped before the clock auction started 34.7% of the
time.18 There are also a number of drops at, or close to value (the 45 degree line), representing a failure to free ride, even
at low values. Although Rs’ stage-one drops along the 45 degree line is not the free riding the theory predicts, it stands in
marked contrast to the frequency with which Rs drop with bids above their value (or win the auction with bids above value)
when competing with Es after stage one (see Figs. 6 and 7 below).

A closer examination of the data shows considerable heterogeneity in the extent to which different subjects drop at
P = 0, as well as the fact that the probability of dropping at zero is inversely related to bidders’ valuations. Over the last
12 auction rounds two out of thirty subjects (6.7%) always dropped out at zero with valuations less than or equal to 50.19

Further, the cumulative percentage of Rs dropping at zero 50% of the time or more (including the two who always dropped
at zero) is 33.3% (10/30). In contrast, 26.7% (8/30) of Rs never dropped at zero with these valuations. We ran a simple
probit to determine the impact on the probability of dropping at zero with valuations less than or equal to 50 as a function
of bidder valuations.20 The coefficient value for valuations is negative and significant at the 1% level, with the implication
that the probability of dropping at zero increases from 9.2% to 68% as valuations drop from 50 to 0. Although not what
the theory predicts (everyone with these valuations should drop at 0), it’s what one might expect from Rs as they have no
possible way of solving precisely for the equilibrium outcome.21

14 This is a little higher than the average student wage which, for local college students with a standard work load averages between 10 and 20 yuan per
hour. (The clock auctions averaged 2 h, with the sealed bid auctions lasting about 1.5 h.)
15 See Hu et al. (2010) for these results. This experimental design used a random tie-breaking rule in case two or more bidders dropped out at the same

time prior to the start of the auction. This does not result in a well-defined equilibrium bid function and was abandoned in favor of the present design.
However, simultaneous drops prior to the start of these auctions were rare (5 out of 275 auctions) so the random tie-breaking rule had little impact on the
outcomes. The size of the negative externality in this earlier experiment was 20, with values drawn from the support [0,100].
16 http://www.econ.ohio-state.edu/kagel/Externality.
17 This figure excludes the 10 cases in which a bidder dropped prior to the start of the auction and lost the SPSB auction.
18 In contrast, when an R’s value was greater than 50, he/she dropped out before the clock started less than 2% of the time. For Es with values less than

or equal to 50, the overall frequency of dropping before the clock started was 13.9%. Both of these actions represent out-of-equilibrium play.
19 These two had valuations less than or equal to 50 in two and four auctions respectively.
20 The probit had a constant and bidders’ valuations as the only explanatory variables. Standard errors were calculated with clustering at the individual

subject level. All Rs were included in the probit any time they had a valuation of 50 or less.
21 There were so few first drops by Rs according to the equilibrium prediction for valuations greater than 50 that we did not repeat this analysis for them.

Note, sincere bidding on the part of these high valuation Rs is not unexpected given that bidders with valuations at the upper end of the interval [0,50]
typically do not free ride (drop at zero as the theory predicts).
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Fig. 3. First drop prices for Rs. Fig. 4. First drop prices for Es.

Result 2. The frequency with which both Rs drop out before the start of the auction is much less than predicted. The frequency with
which the lower valued R wins the right to drop out in the tie-breaking auction is quite low as well, substantially lower than when
neither R drops out, or only one R drops out, prior to the start of the auction. As a result efficiency is substantially greater in cases where
both bidders fail to drop out prior to the start of the auction.22

There were only 10 SPSB (tie-breaking) auctions in which both Rs had values less than or equal to 50 and both dropped
out prior to the start of the auction, much less than the predicted number of simultaneous drops, 91.23 In 3 of these 10
cases the SPSB auction achieved the efficient outcome, with the lower valued R winning the right to not participate in the
auction.24 In equilibrium in the SPSB auction bids are decreasing in value, so that a lower valued R should submit a higher
bid in order to win the right to drop out. But Fig. 5 shows that bids in the SPSB do not decrease in value, although most
of the SPSB bids are located below the equilibrium bid function curve. This failure to achieve consistently high efficiency
in SPSB auctions is not surprising given the results from past Vickrey auctions (Kagel, 1995; Kagel and Levin, forthcoming).
In contrast, when both Rs had values less than 50, but only one bidder dropped out prior to the start of the auction, the
lower valued R dropped out first 71% of the time; and when neither bidder dropped out prior to the start of the auction,
the lower valued R dropped first 62% of the time. While the latter is a direct consequence of the fact that many Rs who
failed to drop at or near zero tended to bid up to their valuations, the former is not.

Result 3. In clock auctions with two bidders being active, bids are close to equilibrium levels for Rs but not Es: Rs tend to drop out at
their value when the remaining bidder is an R, and at their value plus the externality (70) when the remaining bidder is an E. While a
number of Es followed the dominant strategy, a considerable number consistently bid above their values.

Figs. 6 and 7 show, respectively, dropouts and winning bids for those sub-auctions where the remaining bidders were an
E and an R. Two factors stand out. First, there are a large number of instances in which Es, contrary to the dominant bidding
strategy, dropped out with bids above their values (68.7% of all Es dropping out second), but only a handful of auctions
where Es wound up with a winning bid above their value (6.0% of these sub-auctions).25 Second, there were large numbers
of auctions in which Rs won with bids above their value (but less than the externality; 53.6% of these sub-auctions). There

22 Given the low frequency with which both Rs dropped out prior to the start of the auction, the data reported on here is for all auctions.
23 There were 7 cases where an R and E both dropped prior to the start of the auction, and one case in which all three bidders chose to drop prior to the

start of the auction.
24 In one case both Rs had the same value, thereby insuring an efficient drop out.
25 Amending these calculations to allow for rounding error, or momentarily being distracted as the clock ticked up, to bidding above value + 4 ECUs,

these percentages become 58.2% and 4.6%, respectively. Es won 17 auctions in total, with losses in 9 of the auctions. In 7 of these 9 auctions, Rs dropped
out prior to bidding up to their value plus the externality. In equilibrium, Es would have won 1 of these 17 auctions.
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Fig. 5. Bids in SPSB auctions.

Fig. 6. Stage-two bids in clock auctions: both R and E active.

was some heterogeneity in the extent to which Es consistently bid in excess of their value, with 60.0% of Es bidding above
their value more than 50% of the time.26 In contrast, 100% of Rs either won or bid up to their value plus the externality
more than 50% of the time.

Fig. 8 reports dropouts and winning bids for those sub-auctions where both bidders were Rs. In this case Rs’ behavior
is generally consistent with the dominant strategy as drop-out prices hover around the 45 degree line, and there were only
two auctions in which Rs won with bids above their value when competing against another R.27

We were, quite frankly, surprised by the high frequency of Es bidding above their value. However, there is precedence for
this in the literature: Andreoni et al. (2007) report a series of SPSB private value auctions under varying information about
rivals’ values. Most relevant to our experiment is their 1 × 4 auctions in which all four bidders had full information about
each other’s values, which they compared to their 4 × 1 treatment in which none of the bidders had any information

26 This includes winning bids above value.
27 Dropped from Fig. 8 are those sub-auctions in which when E dropped both Rs were still active with one or both bidding above their value. There is an

obvious incentive in these cases for Rs bidding above value to drop immediately, which most of them did.
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Fig. 7. Winning prices in clock auctions: both R and E active in stage 2.

Fig. 8. Stage-two bids and winning prices in clock auctions: both Rs active.

about each other’s values. Absent information about rivals’ values 85.5% of all bids were sincere (equal to value) versus
62.5% sincere bidding in auctions with full information.28 12.0% were above value without information and 25.3% above
value with full information. That is, with full information about rivals’ valuations, there was a sharp increase in bidding
above value which can be attributed to spiteful bidding. While Es in our auctions do not know Rs’ values, they do know
that in sub-auctions in which they are competing with an R, the R has an incentive to bid up to their value plus the amount
of the externality. This allows Es to engage in spiteful bidding relatively safely as long as their bids stayed at or below 70,
and to do so with added risk for bids above 70. Looking back at Fig. 6, this is consistent with this pattern, as Es bidding
above value tapers off a bit for values above 70.29 Finally, note that there are relatively few bids below value in Fig. 6, in

28 Calculations are over the last 10 auctions out of the 20 conducted. Note, their subjects were undergraduates at the University of Wisconsin.
29 When Es dropped second in these sub-auctions, their frequency of dropping above value plus 4 ECUs was 64.3% for values less than or equal to 70 and

48.0% for values above 70.
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Fig. 9. Bids in FPSB auctions with externality present.

contrast to the 12.3% of bids below value reported in the Andreoni et al. full information treatment, which is suggestive of
greater rivalistic bidding in China compared to Wisconsin.

4.2. Bidding in FPSB auctions

Result 4. Consistent with the theory, Rs tend to bid more aggressively (higher) than Es in FPSB auctions. Also consistent with the theory,
Rs and Es tend to bid more aggressively than in the FPSB independent private value auctions (the control treatment).

Fig. 9 plots bids for Rs and Es in the FPSB auctions, along with the equilibrium bid functions. The graph shows that Rs bid
higher than Es, on average, for all valuations, with Rs’ bids at lower valuations closer to their value plus the externality than
the risk-neutral Nash equilibrium (RNNE). Fig. 10 graphs bids for Rs compared to the controls, with Rs bidding higher than
the controls, on average, at all valuations. Note that Fig. 10 shows the standard result for independent private value FPSB
auctions—massive bidding above the RNNE, with Rs bidding even higher than that. Fig. 11 shows bids of Es compared to the
controls. Es tend to bid higher than the controls, particularly at higher valuations. This occurs in spite of the rather massive
overbidding relative to the RNNE in the controls. Finally, there is minimal bidding above value for Es and the controls, with
no bids above their value plus the externality for Rs.30

Random effect regressions, with subject as the random component, reported in Table 2 confirm these results. In these
regressions we have dropped bids for valuations less than 10 as (i) the equilibrium bid function with externalities has
its most pronounced non-linear component in the interval [0,10], and (ii) at low valuations there is some tendency for
“throw away” bids as subjects realize they have very little chance of winning the auction with very low valuations. Several
specifications are reported, with and without a v2 term. All the specifications treat the controls as the reference point
against which to compare R’s and E’s bids. There is a separate dummy variable with value 1 if the subject is an R, and 0
otherwise, a separate dummy with value 1 if the subject is an E, and 0 otherwise, and interaction terms for each of the two
dummies and v , and for the two dummies and the v2 term. Although including the E*v2 and the R*v2 interaction effects
shows that neither of these variables is statistically significant in their own right, and results in the E*v interaction term
no longer being statistically significant, a chi-square test shows that we can reject the null hypothesis at the 1% level that
(i) the E*v interaction terms and the E*v2 interaction terms are jointly equal to zero and (ii) the R*v interaction terms and
the R*v2 interaction terms are jointly equal to zero.

Fig. 12 plots the estimated bid functions for Rs, Es and the controls for the right-most specification in Table 2, our pre-
ferred specification. Evaluating the estimated bid function for this specification, Rs were bidding significantly more than the
controls (p < 0.05) for all valuations, as the theory predicts. Similarly, Es were bidding significantly more than the controls
(p < 0.05) for higher valuations (v > 53), with the differences between Es and the controls not significantly different from
each other for values less than this. Finally, Rs were bidding significantly more than Es at lower valuations (v < 78), with no

30 For Es 1.67% of bids were above value. For the controls, 0.56% of all bids were above value.
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Fig. 10. Bids in FPSB auctions: Rs versus controls. Fig. 11. Bids in FPSB auctions: Es versus controls.

Table 2
Random effect regressions. Dependent variable: Bids in FPSB auction.

Period FPSB w/ & w/o externality

Value > 10

14–25 14–25 14–25

Constant 1.99∗∗∗
(0.65)

−1.80
(1.17)

−3.25∗∗∗
(1.13)

E dummy −1.74
(1.55)

−1.89
(1.48)

−1.91
(2.63)

R dummy 33.95∗∗∗
(3.62)

34.02∗∗∗
(3.60)

37.73∗∗∗
(4.70)

Value 0.81∗∗∗
(0.02)

0.99∗∗∗
(0.05)

1.06∗∗∗
(0.05)

E × value 0.09∗∗∗
(0.02)

0.09∗∗∗
(0.02)

0.09
(0.11)

R × value −0.29∗∗∗
(0.05)

−0.30∗∗∗
(0.05)

−0.47∗∗∗
(0.14)

Value2 – −0.0016∗∗∗
(0.0005)

−0.0022∗∗∗
(0.0005)

E × value2 – – 0.000017
(0.000923)

R × value2 – – 0.0016
(0.0012)

Obs 802 802 802
R-sqrd 0.85 0.85 0.85

Standard deviations in parentheses.
∗∗∗ Significant at 1 percent level, two tailed test.
∗∗ Significant at 5 percent level, two tailed test.
∗ Significant at 10 percent level, two tailed test.
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Fig. 12. Estimated bid functions for FPSB auctions: v > 10, including Vsq.

significant differences between the two at higher valuations. These results are all qualitatively consistent with the theory,
since differences in bids between Es and the controls are minimal at lower valuations, with differences in bids between Rs
and Es growing smaller at higher valuations. As a side note, the negative sign for the v2 term reflects the fact that at the
very highest valuations the tendency to bid well above the risk-neutral NE in IPV FPSB auctions tends to be moderated (see,
for example, Dorsey and Razzolini, 2003).

4.3. Revenue and efficiency31

Result 5. The FPSB auctions have higher average revenue and smaller variance in revenue than the clock auctions. The former is not
statistically significant at conventional levels, but the latter is.

Table 3 compares average revenue under the two auction formats where predicted revenue is based on auction valuations
used in the experiment. Predicted revenue is higher under the FPSB auction than under the clock auction. Actual revenue is
substantially higher than predicted revenue in the FPSB auctions, which is not unexpected given the overbidding (relative
to the RNNE) typically found in FPSB auctions without externalities. Actual revenue is substantially higher than predicted
revenue in the clock auctions as well. This is a result of Es bidding above value. Revenue is higher in the FPSB auctions than
in the clock auctions, but this difference is not statistically significant at conventional levels, largely on account of bidding
above value on the part of Es.32

Absent a negative externality, and assuming risk-neutral bidders, the variance in revenue in English auctions is predicted
to be greater than in the FPSB auctions. With the negative externality this tendency is exaggerated as the remaining in-
cumbent bidder is willing to bid up to his value to forestall entry, with the entrant bidding up to his value. This prediction
is indeed satisfied in our experiment with the variance in revenue in the English auctions substantially higher than in the
FPSB auctions (743.6 versus 130.7; p < 0.01).

Finally, as expected, average revenue is significantly higher in both the clock auctions and the FPSB auctions with the
negative externality than in the FPSB no externality auctions (p < 0.01 in both cases).

Result 6. The clock auctions are significantly more efficient than the FPSB auctions when the externality is present, and the FPSB control
auctions are significantly more efficient than both auctions with the externality present.

31 Statistical tests throughout this section are based on OLS regressions in which the dependent variable consists of session average values for the variable
in question and right hand side variables consist of dummy variables for the treatment conditions. For example, with revenue as the dependent variable,
right hand side variables consist of a dummy variable for FPSB auctions with the negative externality = 1 (0 otherwise) and a dummy for the FPSB
control auctions = 1 (0 otherwise), with the omitted treatment (English clock auctions) represented by the constant. Use of session value averages for the
dependent variable represents the very conservative assumption that each auction session is a single observation because of complete autocorrelation of
observations due to random re-mixing of subjects between auctions (see Frechette, 2012, for a discussion of statistical issues involved in, and alternative
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Table 3
Revenue, efficiency and percent of auctions E win.

Ascending clock FPSB Difference

Actual Predicted Actual Predicted Actual Predicted

Revenue 73.00
(2.03)

63.69
(2.12)

75.99
(0.87)

67.92
(0.84)

2.99 4.23

Efficiency 76.67
(3.16)

100.00
(0.00)

66.11
(3.54)

85.56
(2.63)

−10.56*** −14.44

% E Win 9.44
(2.19)

0.56
(0.56)

20.00
(2.99)

17.78
(2.86)

10.56* 17.22

Notes: Standard deviation in parentheses.
*** Significant at the 0.01 level.

* Significant at the 0.10 level.

We measure efficiency strictly in terms of the frequency with which the highest valued bidder wins the auction. In
calculating this, Rs’ values include the cost of the externality as well as their private value. In equilibrium the clock auction
is predicted to be 100% efficient because free riding only exists in the first-stage of the auction, with bidders having a
dominant strategy to bid up to their valuations after that. In contrast, the FPSB auction with the externality is akin to an
auction with asymmetric valuations, so that efficiency will, in general, be less than 100%.

Table 3 reports average predicted and actual efficiency in the two auction formats with the externality present, where
predicted efficiency is for the auction valuations actually drawn. Actual efficiency is significantly lower in the FPSB auctions
than in the clock auctions, with the difference reasonably close to the predicted difference, in spite of the fact that absolute
efficiency values are well below predicted levels in both cases. Note that the efficiency measure here excludes any potential
increase in efficiency for the market in question given the predicted increase in entry for the FPSB versus the English
auctions. A more complete measure of efficiency would take this effect into account.

Finally, the asymmetric nature of the FPSB auctions with the externality results in substantially lower efficiency compared
to the FPSB control auctions (66.1% vs 88.3%, p < 0.01). The FPSB control auctions are significantly more efficient than the
clock auctions as well (p < 0.05).

Result 7. Es win more often in the FPSB auctions than in the clock auctions.

Table 3 reports the proportion of auctions won by Es. Es are predicted to win substantially more often with the FPSB
auctions compared to the clock auctions, with this result just failing to achieve statistical significance at the 5% level (p =
0.052). Given the weak power of this test due to the limited number of experimental sessions, it is worth noting that using
session averages for all the auctions within a given experimental condition, entry is significantly greater in the English
auctions at better than the 5% level. Thus, to the extent one can draw policy implications from the present experiment, our
results indicate that if policy makers want to encourage entry they should adopt the FPSB auction rather than the clock
auction.

5. Conclusion

This paper investigates theoretically and experimentally the effect of a negative externality on bidding strategies in an
English clock auction and a first-price sealed-bid auction with two incumbents and one potential entrant. On the theoretical
front, the equilibrium analysis shows that in the English auction one of the incumbents will typically engage in severe free
riding. When this happens, the remaining incumbent bids quite aggressively to deter entry, bidding up to his value plus
the potential cost of the negative externality. In the first-price sealed-bid auction, free riding and aggressive bidding coexist
for incumbents as there is no way for bidders to implicitly coordinate their actions as in the English auction, resulting in
incumbents bidding more aggressively than the potential entrant in order to avoid the externality. This in turn induces the
entrant to bid more aggressively than in an auction with no externality present.

We observe substantial, though far from complete free riding in the English clock auction treatment. Further, in those
sub-auctions where the remaining incumbent competes against the entrant, incumbents bid reasonably close to the equilib-
rium level predicted, well above their private value in order to deter the entrant. While bids are close to equilibrium levels
for regulars they are not for entrants, with many of the latter bidding well above their valuations. Looking at the extant
literature indicates that this is not some odd behavior of our sample population, but rather it reflects rivalistic bidding

ways of dealing with, the typical practice of re-mixing subjects between rounds in experiments). Given the clear theoretical predictions regarding efficiency
and entry rates between the clock and FPSB auctions, one-tailed statistical tests are justified and used in Table 3.
32 Es overbidding is present to begin with but grows substantially in frequency over time (36.4% of all E’s bids in the first 13 auctions vs 58.3% in the last

12). As a result revenue is significantly higher in the FPSB auctions than in the clock auctions (p < 0.01) when calculated over all periods and over the first
13 periods.
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of the sort found in Andreoni et al. (2007) in second-price sealed-bid auctions when all bidders’ valuations are common
knowledge. Bidding in the first-price auctions, while well above the levels predicted under the risk-neutral Nash equilib-
rium, tends to satisfy the qualitative predictions of the equilibrium with regular bidders bidding higher than entrants, and
both regular bidders and entrants bidding higher than in a first-price auction with no externality present. Qualitative pre-
dictions regarding higher revenue and lower efficiency in the sealed-bid versus clock auctions, along with the likelihood of
the entrant winning the auction, are satisfied in the data as well.

Our model follows the literature using the term “externality” to measure the negative payoff to an incumbent when
losing the auction. Perhaps a more proper term might be “post-auction effects.” Extensions can be made to enrich the
post-auction interactions, so that the “externality” would be a variable endogenously determined by the post-auction game.
Investigation of this issue is left for future research.

Appendix A

A.1. Proof of Proposition 1

A.1.1. Derivation of B(·)
It is obvious that remaining active until the price reaches his value is a (weakly) dominant strategy for the entrant (E).

It is also clear that the equilibrium bidding strategies after one bidder has dropped out should be the ones specified in the
proposition.

We will first derive the form of B(·) using the necessary equilibrium conditions (we will verify the sufficiency later).
Suppose that incumbent 1 (R1) drops at B(v̂1) while incumbent 2 (R2) follows B(·), where v̂1 is sufficiently close to v1.
Clearly, R1 cannot benefit from dropping higher than B(1) when the other two bidders are still active. So we only need to
consider v̂1 < 1. Let �(v1, v̂1) be the change in R1’s expected payoffs (from dropping at B(v̂1) instead of B(v1)). We first
discuss the case where x < 1/2.

1. v1 ∈ [1 − x,1). If he deviates upwards, his payoff changes only when v2 ∈ (v1, v̂1) and v E > B(v2). If he deviates
downwards, it only affects his payoff when he prevents another bidder (R2 or E) from dropping between B(v1) and
B(v̂1). Hence,

�(v1, v̂1) =
⎧⎨
⎩

∫ v̂1
v1

∫ 1
B(v2)

(v1 − v E)dv E dv2, when v̂1 > v1,∫ v1
v̂1

∫ 1
B(v2)

(v E − v1)dv E dv2 + ∫ B(v1)

B(v̂1)

∫ v1
B−1(v E )

(v2 − v1)dv2 dv E , when v̂1 < v1.

For B(·) to constitute a symmetric equilibrium, we must have the following first-order conditions:

lim
v̂1→v+

1

∂�(v1, v̂1)

∂ v̂1
= 1

2

[
1 − B(v1)

] · [2v1 − 1 − B(v1)
] = 0,

lim
v̂1→v−

1

∂�(v1, v̂1)

∂ v̂1
= 1

2

[
1 − B(v1)

] · [−2v1 + 1 + B(v1)
] = 0.

Thus we must have B(v1) = 2v1 − 1 for v1 ∈ [1 − x,1).
2. v1 ∈ [r,1 − x), where r is the minimum value for an incumbent to drop above price zero. In other words, r is the

(equilibrium) cutoff value under which an incumbent will drop out at the beginning of the clock auction (when the
price equals 0). We do not impose any constraint on r for the moment.
If he deviates upwards and the dropped bidder happens to be R2, we have v2 ∈ (v1, v̂1), and the identities of the two
remaining bidders will change from R2 and E to R1 and E and the deviation payoffs can be obtained accordingly; if
the dropped bidder happens to be E, we have v E ∈ (B(v1), B(v̂1)), and the identities of the two remaining bidders will
change from R2 and E to R2 and R1. If she deviates downward, the situations can be analogously examined. Taking all
together, we have

�(v1, v̂1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ v̂1
v1

∫ v2+x
v1+x (−x)dv E dv2 + ∫ v̂1

v1

∫ v1+x
B(v2)

(v1 − v E)dv E dv2, when v̂1 > v1,∫ v1
v̂1

∫ v1+x
v2+x (−x − v1 + v E)dv E dv2 + ∫ v1

v̂1

∫ v2+x
B(v2)

(v E − v1)dv E dv2

+ ∫ B(v1)

B(v̂1)

∫ v1
B−1(v E )

(v2 − v1)dv2 dv E , when v̂1 < v1.

For B(·) to constitute an equilibrium, we must have

lim
v̂1→v+

1

∂�(v1, v̂1)

∂ v̂1
= 1

2

{[
v1 − B(v1)

]2 − x2} = 0,

lim
v̂1→v−

1

∂�(v1, v̂1)

∂ v̂1
= 1

2

[
v1 + x − B(v1)

] · [−v1 + x + B(v1)
] = 0.
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Since B(v1) = v1 + x cannot be the equilibrium strategy, we must have B(v1) = v1 − x for v1 ∈ [r,1 − x), which also
implies that r = x.
For the case x � 1/2, the analysis is essentially the same except that there is a change in the supports of the piecewise
function B(v): the second segment now vanishes because x � 1 − x. The lower bound of the second segment should
now be 1/2 instead of 1 − x due to the continuity of B(v), which implies that the incumbent with v = 1/2 should be
indifferent.
Note that B(v) so derived is unique. This means that should a symmetric equilibrium strategy exist, it must be uniquely
determined for v � x. It’s also worth noting that the uniqueness and the functional form of B(·) are independent of the
tie-breaking rule at P = 0.

A.1.2. Derivation of ψ(·)
Let w(v) be the expected contingent payoff for an incumbent with value v who loses the augmented auction. We have

w(v) =
min{1,v+x}∫

0

(v − v E)dv E +
1∫

min{1,v+x}
(−x)dv E =

{
(v+x)2

2 − x, for v � 1 − x,

v − 1
2 , for v > 1 − x.

Suppose ψ(v) is strictly decreasing in v . R1 with value v1 bids ψ(v̂1) to maximize

Eπ(v̂1, v1) =
⎧⎨
⎩

∫ v̂1
0 w(v1)dv2/x + ∫ x

v̂1
[−ψ(v2) + ∫ 1

min{1,v2+x}(−x)dv E ]dv2/x, for x < 1
2 ,

2
∫ v̂1

0 w(v1)dv2 + 2
∫ 1

2
v̂1

[−ψ(v2) + ∫ 1
min{1,v2+x}(−x)dv E ]dv2, for x � 1

2 .

(3)

The cutoff value for R2 to drop out at zero price is x when x < 1/2 and 1/2 when x > 1/2, and that is why we need
to analyze the equilibrium separately for two cases above. This is illustrated by the equilibrium schedules in Section 2.1. In
Eq. (3), 1/x is the density function of v2 conditional on v2 < x (and 2 is the density function of v2 conditional on v2 < 1/2).

For ψ(·) to constitute a symmetric equilibrium, we must have ∂ Eπ(v̂1, v1)/∂ v̂1|v̂1=v1
= 0, which leads to, when x < 1

2 ,

ψ(v) = x2 − v2

2
, for v ∈ [0, x],

and when x � 1
2 ,

ψ(v) =
{

x2−v2

2 , for v ∈ [0,1 − x),
1
2 − v, for v ∈ [1 − x, 1

2 ].
For consistency check, ψ(v) so derived is indeed decreasing in v . Also note that ψ(v) = 0 at v = x when x < 1/2 and

at v = 1/2 when x � 1/2.33 Substituting the expressions of ψ(v) into (3) and then differentiating Eπ(v̂1, v1) with respect
to v̂1, we have

sgn

{
∂ Eπ(v̂1, v1)

∂ v̂1

}
=

{
sgn{(v1 − v̂1)(

v1+v̂1
2 + x)}, for v < 1 − x,

sgn{v1 − v̂1}, for v � 1 − x,

which is positive when v̂1 � v1 and negative when v̂1 � v1. This shows that ψ(v) given above is the unique symmetric
equilibrium bid function in the augmented auction.

Therefore, if both incumbents are to drop at zero when their values are both below x when x < 1/2 and below 1/2
when x � 1/2, then in the augmented auction no party has an incentive to deviate from bidding ψ(·) should the other
follow ψ(·).

A.1.3. Verification of equilibrium B(·)
We will consider incumbent 1 (R1) whose value is v1. Given that the other incumbent (R2) follows B(·) and the entrant

(E) stays till the price reaches his value, we will evaluate the change in his expected payoff by deviating to drop at B(v1 ±ε)

instead of B(v1), where ε > 0 and v1 ± ε ∈ [0,min{v1 + x,1}]. Dropping at a price higher than v1 + x or 1 is obviously a
dominated strategy. We will first examine the upward deviation, followed by the downward deviation.

We consider the case x < 1/2 first.

1. Upward deviation. R1’s deviation will affect the auction outcome only when it allows another bidder to drop first at
P ∈ (B(v1), B(v1 + ε)). We discuss three sub-cases in order:

33 It is easily seen that an incumbent with v = x when x < 1/2 and v = 1/2 when x � 1/2 is indifferent between dropping out at zero and staying (but
dropping out immediately after the clock starts). For incumbents who are not supposed to drop at price zero in equilibrium, their optimal bids in the
augmented auction should be zero.
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1.1. v1 ∈ [0, x]. R1 is supposed to drop at P = 0. We will consider two possibilities for v2: v2 ∈ [0, x] and v2 ∈ (x,1] and
show that it is not profitable for R1 to deviate regardless of the value of v2.

1.1.a. v2 ∈ [0, x]. R2 drops at zero in equilibrium. If v2 < v1, both the tie-breaking rule and the deviation to B(v1 + ε) > 0
will make R1 stay with E, and the auction outcome will stay the same. If v2 � v1, we already show that there is no
incentive to deviate from ψ(·) conditional on dropping out, so we only need to rule out the possibility of dropping
at a price strictly above zero. The auction outcome will be different if either of the two events occurs: the outcome
changes from R2 winning against E to E winning against R1 or from R2 winning against E to R1 winning against E.
Note that by this deviation, R1 can avoid paying ψ(v2), which is his equilibrium payment in the augmented auction.
The change in R1’s expected payoff is given by

x∫
v1

v2+x∫
v1+x

(−x)dv E dv2 +
x∫

v1

v1+x∫
0

(v1 − v E)dv E dv2 +
x∫

v1

β(v2)dv2 = −1

3
(x − v1)

(
2x2 − xv1 − v2

1

)
� 0.

Therefore the deviation will make R1 worse off if v2 ∈ [0, x].
1.1.b. v2 ∈ (x,1]. When the current price is 0, R1’s deviation to dropping at B(v1 + ε)(> 0) instead of 0 will affect the

outcome only when it allows another bidder to drop first at P ∈ (0, B(v1 + ε)). There are two possible cases: v1 + ε ∈
(x,1 − x] and v1 + ε ∈ (1 − x,1].
When v1 + ε ∈ (x,1 − x], if R2 drops first after the deviation, it implies that v2 ∈ (x, v1 + ε) and v E ∈ (v2 − x,1]. The
two remaining bidders will change from R2 and E to R1 and E. The auction outcome could be affected in either of the
two events: the outcome changes from R2 winning against E to E winning against R1; or from R2 winning against E to
R1 winning against E. If instead E drops first after the deviation, we have that v E ∈ (0, v1 +ε − x) and v2 ∈ (v E + x,1].
The two remaining bidders will change from R2 and E to R2 and R1. R2 will win in both cases; thus R1’s payoff will
be zero. To sum up, the change in R1’s expected payoff is given by

v1+ε∫
x

v2+x∫
v1+x

(−x)dv E dv2 +
v1+ε∫
x

v1+x∫
v2−x

(v1 − v E)dv E dv2 = 1

2

v1+ε∫
x

(v1 − v2) · (v1 − v2 + 4x)dv2 < 0.

Since v2 ∈ [v1, v1 + ε] and ε � x, we have v1 � v2 and v1 − v2 � −x. Therefore R1 will be worse off from the
deviation. When v1 + ε ∈ (1 − x,1], the argument is similar as above except that 2v2 − 1 is R2’s bid function when
v2 ∈ (1 − x, v1 + ε). It can be demonstrated analogously that the change in R1’s expected payoff is also negative.

1.2. v1 ∈ (x,1 − x). We will consider two possible cases: v1 + ε ∈ (v1,1 − x) and v1 + ε ∈ [1 − x,1). (v1 + ε = 1 is not
possible because of the restrictions that v1 < 1 − x and ε � x.)

1.2.a. v1 + ε ∈ (v1,1 − x). If R2 drops first after the deviation, it implies that v2 ∈ (v1, v1 + ε) and v E ∈ (v2 − x,1]. The
identities of the two remaining bidders will change from R2 and E to R1 and E. Such a deviation can change the
outcome in two possible events: the outcome changes from R2 winning against E to R1 winning against E, and R1’s
payoff changes from 0 to v1 − v E ; from R2 winning against E to E winning against R1, and R1’s payoff changes from
0 to −x. If E drops first after the deviation, it implies that v E ∈ (0, v1 + ε − x) and v2 ∈ (v E + x,1], and the identities
of the two remaining bidders will change from E and R2 to R1 and R2. The fact that R2 is active when the price
has reached B(v1) implies that v2 � v1. R2 will win in both cases and R1’s payoff is not affected by the deviation.
Therefore, the change in R1’s expected payoff is given by

v1+ε∫
v1

v1+x∫
v2−x

(v1 − v E)dv E dv2 +
v1+ε∫
v1

v2+x∫
v1+x

(−x)dv E dv2 = 1

2

v1+ε∫
v1

(v1 − v2) · (v1 − v2 + 4x)dv2,

which is negative for the same reason as above. Therefore R1 will be worse off from the deviation.
1.2.b. v1 + ε ∈ [1 − x,1). If R2 drops first after the deviation, it implies that either v2 ∈ (v1,1 − x) and v E ∈ (v2 − x,1],

or v2 ∈ [1 − x, v1 + ε) and v E ∈ (2v2 − 1,1]. The identities of the two remaining bidders will change from R2 and E
to R1 and E. Such a deviation can change the outcome in two possible ways: the outcome changes from R2 winning
against E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E ; from R2 winning against E to E winning
against R1, and R1’s payoff changes from 0 to −x. If bidder E drops first after the deviation, it implies that either
v E ∈ (0,1 − 2x) and v2 ∈ (v E + x,1], or v E ∈ [1 − 2x,2(v1 + ε) − 1) and v2 ∈ ( v E +1

2 ,1]. The identities of the two
remaining bidders will change from E and R2 to R1 and R2. The fact that R2 is active when the price has reached
B(v1) implies that v2 � v1. R2 will win in both cases and R1’s payoffs will both be zero. Combining these two cases,
the change in R1’s expected payoff is given by

1−x∫
v1

v1+x∫
v2−x

(v1 − v E)dv E dv2 +
1−x∫
v1

v2+x∫
v1+x

(−x)dv E dv2 +
v1+ε∫

1−x

v1+x∫
2v2−1

(v1 − v E)dv E dv2 +
v1+ε∫

1−x

1∫
v1+x

(−x)dv E dv2
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= 1

2

1−x∫
v1

(v1 − v2) · (v1 − v2 + 4x)dv2 + x

v1+ε∫
1−x

(v1 + x − 1)dv2

+ 1

2

v1+ε∫
1−x

[
v2

1 − x2 + (2v1 − 2v2 + 1) · (1 − 2v2)
]

dv2,

which is negative for the same reason as above. Therefore R1 will be worse off from the deviation.
1.3. v1 ∈ [1− x,1). If R2 drops first after the deviation, it implies that v2 ∈ (v1, v1 +ε) and v E ∈ (2v2 −1,1]. The identities

of the two remaining bidders will change from R2 and E to R1 and E. Such a deviation will change the auction outcome
from R2 winning against E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E . If E drops first after
the deviation, it implies that v E ∈ (2v1 − 1,2(v1 + ε) − 1) and v2 ∈ ( v E +1

2 ,1]. The identities of the two remaining
bidders will change from E and R2 to R1 and R2. R2 will win in both cases and R1’s payoffs will both be zero. The
change in R1’s expected payoff is thus given by

v1+ε∫
v1

1∫
2v2−1

(v1 − v E)dv E dv2 = 2

v1+ε∫
v1

(1 − v2)(v1 − v2)dv2,

which is non-positive because v1 � v2 and v2 � 1. Therefore when v1 ∈ [1 − x,1), R1 will not be better off from an
upward deviation.

We have thus shown that for all v1 ∈ [0,1], incumbent 1 will not be better off from any upward deviation.

2. Downward deviation. Incumbent 1’s deviation will affect the auction outcome only when it prevents another bidder
from dropping first at P ∈ (B(v1 − ε), B(v1)). We only need to consider two possible cases: v1 ∈ (x,1 − x] and v1 ∈
(1 − x,1], as we have proved that conditional on dropping out, incumbents with values less than x will follow ψ(·).

2.1. v1 ∈ (x,1 − x]. We will first consider the deviation of dropping at B(v1 − ε) = 0, and then consider the downward
deviation of dropping at a price above zero, i.e., B(v1 − ε) ∈ (0, B(v1)).

2.1.a. v1 − ε � x. Let π(v1, v̂1) be the deviation payoff for R1 by mimicking type v̂1. We have π(v1, v1) > π(x, x). If
v2 � x, there is no profitable downward deviation to dropping at zero, as type x does not have an incentive to deviate
downward, and that type v1 and type x receive exactly the same payoff when deviating downward. If v2 > x, the
deviation will affect the outcome only if it prevents R2 or E from dropping first at P ∈ [0, B(v1)). If R2 is the one
being prevented, we have v2 ∈ (x, v1) and v E ∈ (v2 − x,1]. The identities of the remaining bidders will change from
R1 and E to R2 and E. The auction outcome can be affected in two ways: the outcome changes from R1 winning
against E to E winning against R2 or from R1 winning against E to R2 winning against E. If bidder E is prevented from
dropping first, it implies that v E ∈ [0, v1 − x) and v2 ∈ (v E + x,1]. The identities of the remaining bidders will change
from R1 and R2 to E and R2. The outcome can be affected in two ways: the outcome changes from R1 winning against
R2 to R2 winning against E or from R2 winning against R1 to R2 winning against E. Given all these, the change in R1’s
expected payoff is given by

v1∫
x

v1+x∫
v2+x

(−x − v1 + v E)dv E dv2 +
v1∫

x

v2+x∫
v2−x

(v E − v1)dv E dv2 +
v1−x∫
0

v1∫
v E +x

(v2 − v1)dv2 dv E

= −1

2

v1∫
x

(v1 − v2) · (v1 − v2 + 4x)dv2 − 1

2

v1−x∫
0

(−v1 + x + v E)2 dv E ,

which is negative since v2 � v1. Therefore R1 will be worse off from the deviation.
2.1.b. B(v1 − ε) ∈ (0, B(v1)). If R2 is prevented from dropping first, it implies that v2 ∈ (v1 − ε, v1) and v E ∈ (v2 − x,1]. The

identities of the remaining bidders will change from R1 and E to R2 and E. The auction outcome can be altered in two
ways: the outcome changes from R1 winning against E to E winning against R2 or from R1 winning against E to R2
winning against E. If E is prevented from dropping first, it implies that v E ∈ (v1 − ε − x, v1 − x) and v2 ∈ (v E + x,1].
The identities of the remaining bidders will change from R1 and R2 to E and R2. The auction outcome can be altered
in two ways: the outcome changes from R1 winning against R2 to R2 winning against E or from R2 winning against
R1 to R2 winning against E, and R1’s payoff is not affected. Therefore, the change in R1’s expected payoff is given by

v1∫
v1−ε

v1+x∫
v2+x

(−x − v1 + v E)dv E dv2 +
v1∫

v1−ε

v2+x∫
v2−x

(v E − v1)dv E dv2 +
v1−x∫

v1−ε−x

v1∫
v E +x

(v2 − v1)dv2 dv E
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= −1

2

v1∫
v1−ε

(v1 − v2) · (v1 − v2 + 4x)dv2 − 1

2

v1−x∫
v1−ε−x

(−v1 + x + v E)2 dv E ,

which is negative since v2 � v1. Therefore R1 will be worse off from the deviation.
2.2. v1 ∈ (1 − x,1]. We consider three cases in order.

2.2.a. B(v1 − ε) = 0. If v2 � x, based on the same arguments in 2.1.a. we can show that R1 does not have an incentive
to deviate. If v2 > x, the deviation will affect the auction outcome only if it prevents R2 or E from dropping first at
P ∈ [0, B(v1)). If R2 is prevented from dropping first, it implies that either v2 ∈ (x,1 − x] and v E ∈ (v2 − x,1], or
v2 ∈ (1 − x, v1) and v E ∈ (2v2 − 1,1]. The identities of the remaining bidders will change from R1 and E to R2 and
E. The auction outcome can be affected in two ways: the outcome changes from R1 winning against E to E winning
against R2 or from R1 winning against E to R2 winning against E. If E is prevented from dropping first, it implies
that either v E ∈ [0,1 − 2x) and v2 ∈ (v E + x,1], or v E ∈ (1 − 2x,2v1 − 1] and v2 ∈ ( v E +1

2 ,1]. The identities of the
remaining bidders will change from R1 and R2 to E and R2. The auction outcome can be altered in two ways: the
outcome changes from R1 winning against R2 to R2 winning against E or from R2 winning against R1 to R2 winning
against E. Therefore, the change in R1’s expected payoff from dropping at 0 instead of B(v1) is given by

1−x∫
x

1∫
v2+x

(−x − v1 + v E)dv E dv2 +
1−x∫
x

v2+x∫
v2−x

(v E − v1)dv E dv2 +
v1∫

1−x

1∫
2v2−1

(v E − v1)dv E dv2

+
1−2x∫
0

v1∫
v E +x

(v2 − v1)dv2 dv E +
2v1−1∫

1−2x

v1∫
v E +1

2

(v2 − v1)dv2 dv E

= −1

2

1−x∫
x

(v1 − v2) · (v1 − v2 + 4x)dv2 − 2

v1∫
1−x

(v1 − v2) · (1 − v2)dv2

−1

2

1−2x∫
0

(−v1 + x + v E)2 dv E − 1

8

2v1−1∫
1−2x

(1 − 2v1 + v E)2 dv E ,

which is clearly negative. Therefore, R1 will be worse off from the deviation.
2.2.b. B(v1 − ε) ∈ (0,1 − 2x]. Based on similar arguments as in case 2.1, the change in R1’s expected payoff is given by

1−x∫
v1−ε

1∫
v2+x

(−x − v1 + v E)dv E dv2 +
1−x∫

v1−ε

v2+x∫
v2−x

(v E − v1)dv E dv2 +
v1∫

1−x

1∫
2v2−1

(v E − v1)dv E dv2

+
1−2x∫

v1−ε−x

v1∫
v E +x

(v2 − v1)dv2 dv E +
2v1−1∫

1−2x

v1∫
v E +1

2

(v2 − v1)dv2 dv E

= −1

2

1−x∫
v1−ε

(v1 − v2) · (v1 − v2 + 4x)dv2 − 2

v1∫
1−x

(v1 − v2) · (1 − v2)dv2

− 1

2

1−2x∫
v1−ε−x

(−v1 + x + v E)2 dv E − 1

8

2v1−1∫
1−2x

(1 − 2v1 + v E)2 dv E ,

which is obviously negative. Therefore R1 will be worse off from the deviation.
2.2.c. B(v1 −ε) ∈ (1−2x, B(v1)). That B(v1 −ε) > 1−2x implies that both incumbents can win against E. If R2 is prevented

from dropping first, it implies that v2 ∈ (v1 − ε, v1) and v E ∈ (2v2 − 1,1]. The identities of the remaining bidders will
change from R1 and E to R2 and E. The deviation will change the auction outcome from R1 winning against E to R2
winning against E, and R1’s payoff changes from v1 − v E to 0. If E is prevented from dropping first, it implies that
v E ∈ (2(v1 −ε)−1,2v1 −1] and v2 ∈ ( v E +1

2 ,1]. The identities of the remaining bidders will change from R1 and R2 to
E and R2. The auction outcome can be altered in two events: the outcome changes from R1 winning against R2 to R2
winning against E, and R1’s payoff changes from v1 − v2 to 0; or from R2 winning against R1 to R2 winning against E,
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and R1’s payoff is not affected. Putting together, if R1 drops at B(v1 − ε) > 1 − 2x instead of staying till B(v1), the
change in his expected payoff equals

v1∫
v1−ε

1∫
2v2−1

(v E − v1)dv E dv2 +
2v1−1∫

2(v1−ε)−1

v1∫
v E +1

2

(v2 − v1)dv2 dv E

= −2

v1∫
v1−ε

(v1 − v2) · (1 − v2)dv2 − 1

8

2v1−1∫
2(v1−ε)−1

(1 − 2v1 + v E)2 dv E ,

which is obviously negative. Therefore, when v1 ∈ (1 − x,1], R1 can only be worse off from any downward deviation.
Next, we consider the case x � 1/2. The analysis will be similar to the case of x < 1/2 above.

1. Upward deviation. When the price has reached B(v1) and no bidder has dropped yet, we consider R1’s upward
deviation to dropping at B(v1 + ε). R1’s deviation will affect the auction outcome only if it allows another bidder
to drop first at price P ∈ (B(v1), B(v1 + ε)). We will consider three possible cases: v1 ∈ [0,1 − x), v1 ∈ [1 − x, 1

2 ], and
v1 ∈ ( 1

2 ,1).
1.1. v1 ∈ [0,1 − x). Suppose R1 drops at B(v1 + ε) > 0 instead. We will consider two possibilities of v2: v2 ∈ [0, 1

2 ] and
v2 ∈ ( 1

2 ,1].
1.1.a. v2 ∈ [0, 1

2 ]. R2 drops at zero. If R1 follows B(v1) = 0, the two Rs will tie at zero and the tie-breaking rule will let
the bidder with higher value stay. If v2 < v1, both the tie-breaking rule and the deviation to B(v1 + ε) > 0 will make
bidder 1 stay with E, and the auction will have the same outcome. If v2 � v1, the tie-breaking rule will make R2 stay
and the upward deviation will make R1 stay. The auction outcome can be affected in two ways: the outcome changes
from R2 winning against E to E winning against R1, and R1’s payoff changes from 0 to −x; or from R2 winning against
E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E . Given these, R1’s change in expected payoff
from dropping at B(v1 + ε) > 0 instead of B(v1) = 0 is given by

1−x∫
v1

v2+x∫
v1+x

(−x)dv E dv2 +
1
2∫

1−x

1∫
v1+x

(−x)dv E dv2 +
1
2∫

v1

v1+x∫
0

(v1 − v E)dv E dv2

= x

1−x∫
v1

(v1 − v2)dv2 + x

1
2∫

1−x

[
v1 − (1 − x)

]
dv2 + 1

2

1
2∫

v1

(
v2

1 − x2)dv2,

which is negative as all the integrands above are negative. Therefore R1 will be worse off from the deviation.
1.1.b. v2 ∈ ( 1

2 ,1]. R2 will drop at 2v2 − 1 > 0. When the current price is 0, R1’s deviation to B(v1 + ε) > 0, i.e., v1 + ε ∈
( 1

2 , v1 + x], instead of dropping at 0 will affect the auction outcome only when it allows another bidder to drop first
at price P ∈ [0, B(v1 + ε)). If R2 drops first after the deviation, it implies that v2 ∈ ( 1

2 , v1 + ε) and v E ∈ (2v2 − 1,1].
The two remaining bidders will change from R2 and E to R1 and E. The auction outcome could be affected in two
ways: the outcome changes from R2 winning against E to E winning against R1, and R1’s payoff changes from 0 to −x;
or from R2 winning against E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E . If instead bidder E
drops first after the deviation, it implies that v E ∈ (0,2(v1 + ε) − 1) and v2 ∈ ( v E +1

2 ,1]. The two remaining bidders
will change from R2 and E to R2 and R1. In both cases R2 will win and R1’s payoff will be zero. Given all these, R1’s
change in expected payoff from dropping at B(v1 + ε) > 0 is given by

v1+ε∫
1
2

1∫
v1+x

(−x)dv E dv2 +
v1+ε∫
1
2

v1+x∫
2v2−1

(v1 − v E)dv E dv2

=
v1+ε∫
1
2

[
v1 − (1 − x)

]
dv2 + 1

2

v1+ε∫
1
2

[
v2

1 − x2 + (2v1 − 2v2 + 1) · (1 − 2v2)
]

dv2,

which is negative (as can be easily verified). So R1 will be worse off from the deviation.
1.2. v1 ∈ [1 − x, 1

2 ]. Again we consider two possibilities of v2: v2 ∈ [0, 1
2 ], or v2 ∈ ( 1

2 ,1].
1.2.a. v2 ∈ [0, 1

2 ]. If R1 stays in the auction, he is certain to win against E. If v2 < v1, for the same reason as in the case
x < 1/2, R1’s upward deviation to B(v1 + ε) > 0 will not affect the auction outcome. If v2 ∈ (v1,

1
2 ], the deviation to
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B(v1 + ε) > 0 could change the auction outcome from R2 winning against E to R1 winning against E, and R1’s payoff
changes from 0 to v1 − v E . R1’s change in expected payoff from dropping at B(v1 +ε) > 0 instead of B(v1) = 0 equals

1
2∫

v1

1∫
0

(v1 − v E)dv E dv2 =
1
2∫

v1

(
v1 − 1

2

)
dv E dv2,

which is negative. Therefore R1 will be worse off from the deviation.
1.2.b. v2 ∈ ( 1

2 ,1]. R2 will drop at 2v2 − 1 > 0. When the current price is 0, R1’s deviation to B(v1 + ε) > 0, i.e., v1 + ε ∈
( 1

2 , v1 + x], instead of dropping at 0 will affect the auction outcome only when it allows another bidder to drop first at
the price of P ∈ [0, B(v1 +ε). If R2 drops first after the deviation, it implies that v2 ∈ ( 1

2 , v1 +ε) and v E ∈ (2v2 −1,1].
The two remaining bidders will change from R2 and E to R1 and E. The auction outcome could be changed from R2
winning against E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E . If instead bidder E drops first
after the deviation, it implies that v E ∈ (0,2(v1 + ε) − 1) and v2 ∈ ( v E +1

2 ,1]. The two remaining bidders will change
from R2 and E to R2 and R1. In both cases R2 will win and R1’s payoff will be zero. Given all these, R1’s change in
expected payoff from dropping at B(v1 + ε) > 0 is given by

v1+ε∫
1
2

1∫
2v2−1

(v1 − v E)dv E dv2 = −2

v1+ε∫
1
2

(v2 − v1) · (1 − v2)dv2,

which is negative because v2 � v1 and v2 � 1. Hence bidder 1 will be worse off from the deviation.
1.3. v1 ∈ ( 1

2 ,1). When the price has reached B(v1) = 2v1 − 1 > 0 and no bidder has dropped, it implies that both R1
and R2 could win against E, and R2 has a higher value than R1. We consider R1’s upward deviation by dropping at
B(v1 + ε) ∈ (2v1 − 1,1]. If R2 drops first after the deviation, it implies that v2 ∈ (v1, v1 + ε) and v E ∈ (2v2 − 1,1].
The identities of the two remaining bidders will change from R2 and E to R1 and E. Such a deviation will change the
outcome from R2 winning against E to R1 winning against E, and R1’s payoff changes from 0 to v1 − v E . If E drops
first after the deviation, it implies that v E ∈ (2v1 − 1,2(v1 + ε) − 1) and v2 ∈ ( v E +1

2 ,1]. The identities of the two
remaining bidders will change from E and R2 to R1 and R2. In both cases R2 will win and R1’s payoff will be zero.
Given all these, R1’s change in expected payoff from dropping at B(v1 + ε) instead of B(v1) is given by

v1+ε∫
v1

1∫
2v2−1

(v1 − v E)dv E dv2 = 2

v1+ε∫
v1

(1 − v2)(v1 − v2)dv2,

which is negative as v1 � v2 and v2 � 1. Therefore when v1 ∈ [1 − x,1), R1 will not be better off from an upward
deviation.
Finally, when v1 = 1, R1 will not stay at a price above 1 as doing so can only increase the chance of winning with a
negative profit.

2. Downward deviation. When the price has reached B(v1 − ε) with v1 − ε ∈ [0, v1) and no bidder has dropped yet, we
consider R1’s downward deviation of dropping at B(v1 − ε). R1’s deviation will affect the auction outcome only when
it prevents another bidder from dropping first at P ∈ (B(v1 −ε), B(v1)). We will focus on the case v1 ∈ ( 1

2 ,1] as this is
the range of v1 where a downward deviation is relevant. By following B(·), R1 is supposed to drop at 2v1 − 1 > 0. We
will first consider the deviation of dropping at B(v1 − ε) = 0, and then consider the downward deviation of dropping
at a positive price, i.e., B(v1 − ε) ∈ (0, B(v1)).

2.1. B(v1 − ε) = 0. If v2 � 1
2 , R1 and R2 will both drop at price zero. The tie-breaking rule will let R1, i.e., the bidder

with a higher value, stay in the auction. Therefore the deviation makes no difference to the auction outcome (R1
bidding against E starting from price zero). If v2 > 1

2 , the deviation will affect the auction outcome only if it prevents
R2 or E from dropping first at P ∈ [0, B(v1)). If R2 is prevented from dropping first, it implies that v2 ∈ ( 1

2 , v1) and
v E ∈ (2v2 − 1,1]. The identities of the remaining bidders will change from R1 and E to R2 and E. The auction outcome
will change from R1 winning against E to R2 winning against E, and R1’s payoff changes from v1 − v E to 0. If E is
prevented from dropping first, it implies that v E ∈ [0,2v1 − 1) and v2 ∈ ( v E +1

2 ,1]. The identities of the remaining
bidders will change from R1 and R2 to E and R2. The auction outcome can be affected in two ways: the outcome
changes from R1 winning against R2 to R2 winning against E, and R1’s payoff changes from v1 − v2 to 0; or from R2
winning against R1 to R2 winning against E, and R1’s payoff is not affected. Given all these, R1’s change in expected
payoff from dropping at 0 instead of B(v1) is given by

v1∫
1
2

1∫
2v2−1

(v E − v1)dv E dv2 +
2v1−1∫

0

v1∫
v E +1

2

(v2 − v1)dv2 dv E
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= 2

v1∫
1
2

(1 − v2)(v2 − v1)dv2 − 1

8

2v1−1∫
0

(1 − 2v1 + v E)2 dv E ,

which is negative since v2 � v1. Therefore bidder 1 will be worse off from the deviation.
2.2. B(v1 − ε) ∈ (0, B(v1)). When the price has reached B(v1 − ε) > 0, i.e., v1 − ε ∈ ( 1

2 , v1), we consider a deviation of
dropping at B(v1 − ε). The deviation will affect the auction outcome only if it prevents R2 or E from dropping first at
P ∈ (B(v1 − ε), B(v1)). If R2 is prevented from dropping first, it implies that v2 ∈ (v1 − ε, v1) and v E ∈ (2v2 − 1,1].
The identities of the remaining bidders will change from R1 and E to R2 and E. The auction outcome will change
from R1 winning against E to R2 winning against E, and R1’s payoff changes from v1 − v E to 0. If E is prevented from
dropping first, it implies that v E ∈ (2(v1 − ε) − 1,2v1 − 1) and v2 ∈ ( v E +1

2 ,1]. The identities of the remaining bidders
will change from R1 and R2 to E and R2. The auction outcome can be affected in two ways: the outcome changes
from R1 winning against R2 to R2 winning against E, and R1’s payoff changes from v1 − v2 to 0; or from R2 winning
against R1 to R2 winning against E, and R1’s payoff is not affected. Given all these, R1’s change in expected payoff
from dropping at B(v1 − ε) ∈ (0, B(v1)) is given by

v1∫
v1−ε

1∫
2v2−1

(v E − v1)dv E dv2 +
2v1−1∫

2(v1−ε)−1

v1∫
v E +1

2

(v2 − v1)dv2 dv E

= 2

v1∫
v1−ε

(1 − v2) · (v2 − v1)dv2 − 1

8

2v1−1∫
2(v1−ε)−1

(1 − 2v1 + v E)2 dv E ,

which is negative since v2 � v1. Therefore bidder 1 will be worse off from the deviation.
We have thus shown that, when v1 ∈ ( 1

2 ,1], R1 will be worse off from any downward deviation.
In summary, given that bidder 2 follows B(·) and bidder E bids his value, it is not profitable for bidder 1 to deviate
(either upward or downward) from following B(·); hence the specified equilibrium is verified. �

A.2. Proof of Proposition 2

The derivation preceding to the proposition shows that the equilibrium has to satisfy the differential equations (1). We
now argue that the boundary condition is given by β(0) = γ (0) = 0. That γ (0) = 0 is obvious given β(0) = 0. Now suppose
β(0) = b > 0, then we must have γ (b) = b: if γ (b) < b, there is no chance for the entrant of type b to win, so γ (b) � b; if
γ (b) > b, type b entrant may win only to lose money, which is inconsistent with any equilibrium. Thus when β(0) = b > 0,
we must have γ (b) = b. However, given that R2 follows β and E follows γ in which β(0) = γ (b) = b > 0, we claim that R1
with v1 = 0 will have an incentive to deviate from bidding β(0) = b: by bidding b, R1 wins only if he wins the tie-break
over R2 in the event of v E � b and v2 = 0, in which case he incurs a net loss (due to the overbidding). By deviating to
bidding at zero, R1 will lose for sure and avoid a loss in such an event. For all the other events, R1 is indifferent between
bidding b and 0. As such, R1 is strictly better off to deviate from bidding β(0) = b when v1 = 0. This shows that in any
symmetric increasing equilibrium, we must have the boundary condition β(0) = γ (0) = 0.

Next we show that β(1) = γ (1) = b for some b < 1 and β(v) > γ (v) for all v ∈ (0,1).

1. β(1) = γ (1) = b for some b < 1.
Clearly, γ (1) � β(1) must hold because γ (1) > β(1) is strictly dominated for an entrant with v E = 1. Now suppose
γ (1) < β(1) holds in equilibrium. Let π(v1, v̂1) denote R1’s expected payoff when he bids β(v̂1) given that his type is
v1 and that R2 follows β(·). Then π(v1, v̂1) must be maximized at v̂1 = v1. However, at β(v1) = γ (1), we can show
that limv̂1→v−

1

∂π(v1,v̂1)

∂ v̂1
< limv̂1→v+

1

∂π(v1,v̂1)

∂ v̂1
, contradicting that π(v1, v̂1) achieves the maximum at v̂1 = v1. Finally

γ (1) < 1; otherwise the entrant with v = 1 has an incentive to underbid.
2. Incumbents bid more aggressively than the entrant.

Whenever β(v∗) = γ (v∗) = b∗ and v∗ �= 0, from the second equation in the system (1), we have

β ′(v∗) = 2(v∗ − b∗)
v∗ <

2(v∗ − b∗ + x)

v∗ = γ ′(v∗). (4)

Note that the above inequality also holds at v∗ = 1. So β(1) = γ (1) and β ′(1) < γ ′(1). Suppose the set {v ∈ (0,1):
β(v) = γ (v)} is non-empty, and let v∗∗ = max{v ∈ (0,1): β(v) = γ (v)}. It must be the case that β ′(v∗∗) > γ ′(v∗∗), which
contradicts (4). Therefore, it has to be the case that β(v) > γ (v) for all v ∈ (0,1). �
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